销售热线

021-39529829
主营产品:FESTO气缸;SMC气缸;BURKERT电磁阀;SMC电磁阀;FESTO电磁阀
  • 技术文章ARTICLE

    您当前的位置:首页 > 技术文章 > P+F编码器,P+F增量式编码器,P+F倍加福旋转编码器,P+F增量式编码器

    P+F编码器,P+F增量式编码器,P+F倍加福旋转编码器,P+F增量式编码器

    发布时间: 2011-10-21  点击次数: 1856次

    P+F编码器,P+F增量式编码器,P+F倍加福旋转编码器,P+F增量式编码器、39529839、39529830:单荣兵
    P+F编码器是把角位移或直线位移转换成电信号的一种装置。   前者成为码盘,后者称码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是“1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是“1”还是“0”。   按照工作原理编码器可分为增量式和式两类。增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。   旋转增量式编码器以转动时输出脉冲,通过计数设备来知道其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的结果出现后才能知道。   解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。在参考点以前,是不能保证位置的准确性的。为此,在工控中就有每次操作找参考点,开机找零等方法。   比如,打印机扫描仪的定位就是用的增量式编码器原理,每次开机,我们都能听到噼哩啪啦的一阵响,它在找参考零点,然后才工作。P+F编码器,P+F增量式编码器,P+F倍加福旋转编码器,P+F增量式编码器、39529839、39529830:单荣兵   增量式编码器特点:   增量式编码器转轴旋转时,有相应的脉冲输出,其计数起点任意设定,可实现多圈无限累加和测量。编码器轴转一圈会输出固定的脉冲,脉冲数由编码器光栅的线数决定。需要提高分辨率时,可利用 90 度相位差的 A、B 两路信号进行倍频或更换高分辨率编码器。
    量式光电编码器原理及其结构 增量式光电编码器的特点是每产生一个输出脉冲信号就对应于一个增量位移,但是不能 通过输出脉冲区别出在哪个位置上的增量。它能够产生与位移增量等值的脉冲信号,其作用 是提供一种对连续位移量离散化或增量化以及位移变化(速度)的传感方法,它是相对于某 个基准点的相对位置增量,不能够直接检测出轴的位置信息。一般来说,增量式光电编 码器输出 A、B 两相互差 90°电度角的脉冲信号(即所谓的两组正交输出信号),从而可方 便地判断出旋转方向。同时还有用作参考零位的 Z 相标志(指示)脉冲信号,码盘每旋转 一周,只发出一个标志信号。标志脉冲通常用来指示机械位置或对积累量清零。 增量式光电编码器主要由光源、码盘、检测光栅、光电检测器件和转换电路组成,如图 1-1 所示。码盘上刻有节距相等的辐射状透光缝隙,相邻两个透光缝隙之间代表一个增量周 期;检测光栅上刻有 A、B 两组与码盘相对应的透光缝隙,用以通过或阻挡光源和光电检测 器件之间的光线。它们的节距和码盘上的节距相等,并且两组透光缝隙错开 1/4 节距,使得 光电检测器件输出的信号在相位上相差 90°电度角。当码盘随着被测转轴转动时,检测光栅 不动,光线透过码盘和检测光栅上的透过缝隙照射到光电检测器件上,光电检测器件就输出 两组相位相差 90°电度角的近似于正弦波的电信号,电信号经过转换电路的信号处理,可以 得到被测轴的转角或速度信息。增量式光电编码器输出信号波形如图 1-2 所示。P+F编码器,P+F增量式编码器,P+F倍加福旋转编码器,P+F增量式编码器、39529839、39529830:单荣兵 增量式光电编码器的优点是:原理构造简单、易于实现;机械平均寿命长,可达到几万 小时以上;分辨率高;抗干扰能力较强,信号传输距离较长,可靠性较高。其缺点是它无法 直接读出转动轴的位置信息。 图 1-2 增量式光电编码器的输出信号波形 1.2.2 基本技术规格 在增量式光电编码器的使用过程中,对于其技术规格通常会提出不同的要求,其中zui关 键的就是它的分辨率、精度、输出信号的稳定性、响应频率、信号输出形式。 (1)分辨率 光电编码器的分辨率是以编码器轴转动一周所产生的输出信号基本周期数来表示的,即 脉冲数/转(PPR)。码盘上的透光缝隙的数目就等于编码器的分辨率,码盘上刻的缝隙越多, 编码器的分辨率就越高。在工业电气传动中,根据不同的应用对象,可选择分辨率通常在 500~6000PPR 的增量式光电编码器,zui高可以达到几万 PPR。交流伺服电机控制系统中通 常选用分辨率为 2500PPR 的编码器。此外对光电转换信号进行逻辑处理,可以得到 2 倍频 或 4 倍频的脉冲信号,从而进一步提高分辨率。 (2)精度 增量式光电编码器的精度与分辨率*无关,这是两个不同的概念。精度是一种度量在 所选定的分辨率范围内,确定任一脉冲相对另一脉冲位置的能力。精度通常用角度、角分或 角秒来表示。编码器的精度与码盘透光缝隙的加工、码盘的机械旋转情况的制造精度因 素有关,也与安装技术有关。 (3)输出信号的稳定性 编码器输出信号的稳定性是指在实际运行条件下,保持规定精度的能力。影响编码器输 出信号稳定性的主要因素是温度对电子器件造成的漂移、外界加于编码器的变形力以及光源 特性的变化。由于受到温度和电源变化的影响,编码器的电子电路不能保持规定的输出特性, 在设计和使用中都要给予充分考虑。 (4)响应频率 编码器输出的响应频率取决于光电检测器件、电子处理线路的响应速度。当编码器高速 旋转时,如果其分辨率很高,那么编码器输出的信号频率将会很高。如果光电检测器件和电 子线路元器件的工作速度与之不能相适应,就有可能使输出波形严重畸变,甚至产生丢失脉 冲的现象。这样输出信号就不能准确反映轴的位置信息。所以,每一种编码器在其分辨率一 定的情况下,它的zui高转速也是一定的,即它的响应频率是受限制的。、39529839、39529830:单荣兵编码器的zui大响应频 率、分辨率和zui高转速之间的关系如公式(1-1)所示。 (5)信号输出形式 在大多数情况下,直接从编码器的光电检测器件获取的信号电平较低,波形也不规则,还不能适应于控 制、信号处理和远距离传输的要求。所以,在编码器内还必须将此信号放大、 整形。经过处理的输出信号一般近似于正弦波或矩形波。由于矩形波输出信号容易进行数字 处理,所以这种输出信号在定位控制中得到广泛的应用。采用正弦波输出信号时基本消除了 定位停止时的振荡现象,并且容易通过电子内插方法,以较低的成本得到较高的分辨率。 增量式光电编码器的信号输出形式有:集电极开路输出(Open Collector)、电压输出 (Voltage Output)、线驱动输出(Line Driver)、互补型输出(Complemental Output)和推挽 式输出(Totem Pole)。 集电极开路输出这种输出方式通过使用编码器输出侧的 NPN 晶体管,将晶体管的发 射极引出端子连接至 0V,断开集电极与+Vcc 的端子并把集电极作为输出端。在编码器供电 电压和信号接受装置的电压不一致的情况下,建议使用这种类型的输出电路。输出电路如图 1-3 所示。主要应用域有电梯、纺织机械、注油机、自动化设备、切割机械、印刷机械、 包装机械和针织机械等。 图 1-3 集电极开路输出电路 电压输出 这种输出方式通过使用编码器输出侧的 NPN 晶体管,将晶体管的发射极引 出端子连接至 0V,集电子与+Vcc 和负载电阻相连,并作为输出端。在编码器供电电压 和信号接受装置的电压一致的情况下,建议使用这种类型的输出电路。输出电路如图 1-4 所 示。主要应用域有电梯、纺织机械、注油机、自动化设备、切割机械、印刷机械、包装机 械和针织机械等。 图 1-4 电压输出电路 线驱动输出这种输出方式将线驱动 IC 芯片(26LS31)用于编码器输出电路,由 于它具有高速响应和良好的抗噪声,使得线驱动输出适宜长距离传输。输出电路如图 1-5 所示。主要应用域有伺服电机、机器人、数控加工机械等。 图 1-5 线驱动输出电路 互补型输出这种输出方式由上下两个分别为 PNP 型和 NPN 型的三极管组成,当其中 一个三极管导通时,另外一个三极管则关断。这种输出形式具有高输入阻抗和低输出阻抗, 因此在低阻抗情况下它也可以提供大范围的电源。由于输入、输出信号相位相同且频率范围 宽,因此它适合长距离传输。输出电路如图 1-6 所示。主要应用于电梯域或域。 图 1-6 互补型输出电路 推挽式输出这种输出方式由上下两个 NPN 型的三极管组成,当其中一个三极管导通 时,另外一个三极管则关断。电流通过输出侧的两个晶体管向两个方向流入,并始终输出电 流。因此它阻抗低,而且不太受噪声和变形波的影响。输出电路如图 1-7 所示。主要应用 域有电梯、纺织机械、注油机、自动化设备、切割机械、印刷机械、包装机械和针织机械等。 图 1-7 推挽式输出电路、39529839、39529830:单荣兵

产品中心 Products

沪公网安备 31011402005369号